

The Role of Adaptation Technology to enhance Social and Economic Resilience to Climate Change

¹**Antonino Pedro Marsal, ²Adebayo Oluwatosin, ³Sulani**

¹**Instituto Boaventura De Timor Leste**

²**Obafemi Awolowo University, Nigeria**

³**University of Sunan Giri Surabaya, Indonesia**

Email: antoniopedromarsal@gmail.com

ABSTRACT – Climate change has had a significant impact on various sectors of life, requiring the development and implementation of adaptation technology as a strategic solution. This research aims to analyze the role of adaptation technology to deal with climate change and its impact on the social and economic life of the community. Using a literature research approach, this research explores the challenges in the development of adaptation technology, the effectiveness of implementation in various sectors, and its contribution to social and economic resilience. The results show that adaptation technologies play an important role in enhancing the productivity of the agricultural sector, strengthening infrastructure against natural disasters, and creating adaptive financial systems to reduce economic risks due to climate change. Adaptation technologies also contribute to raising community awareness of climate change risks and supporting sustainable development policies. Challenges in the implementation of these technology are still great, including limited funding, gaps in access to technology, and lack of policy coordination between central and local governments. More effective strategies are needed to accelerate the adoption of adaptation technology through enhanced investment in research and development, integration of ecosystem-based policy, and active community participation in adaptation planning. With a more inclusive and evidence-based approach, it is expected that adaptation technology can provide more optimal solutions to the challenges of climate change and improve the social and economic resilience of the community.

Keywords: Climate change, Adaptation technology, Economic resilience, Technology innovation, Adaptation policy, Sustainability.

A. INTRODUCTION

Climate change has become a global challenge that affects many aspects of human life, including the economy, health, and social and

environmental systems. Rising global average temperatures, rising frequency and intensity of extreme weather occurrence, and changing precipitation patterns are some of the tangible impacts that have been observed in various parts of the world (O'Brien, 2017). These phenomena challenge the sustainability of natural resources and enhance social vulnerability, especially for communities living in disaster-prone areas (Timmermann, 2021). As the impacts become more apparent, adaptation to climate change is becoming enhance important to ensure social and economic sustainability.

One of the sectors significantly affected by climate change is agriculture. Changing weather patterns and rising global temperatures have led to a decline in agricultural productivity in many countries, especially in tropical regions that rely on traditional agriculture systems (Solorzano, 2016). The instability of food production impacts farmers' economies, and poses a threat to global food security. Kobayashi and Furuya (2015) explain that various adaptation technologies have been developed, including the development of drought-resistant crop varieties, smart irrigation systems, and data-driven agriculture techniques to enhance resource use efficiency.

The impacts of climate change are also visible in aspects of the social and economic life of urban communities, in addition to the agricultural sector. The rising frequency of disasters such as floods and heat waves has forced many cities to develop adaptation strategies to protect their infrastructure and residents (Antoci et al., 2019). Examples include the implementation of ecosystem-based urban drainage systems to reduce flood risks and the development of green spaces that serve as natural coolers for cities experiencing extreme temperatures (Álvaro Enríquez-de-Salamanca et al., 2017). As the

challenges posed by climate change are rising, adaptation technologies are becoming a key component of sustainable development planning.

While adaptation technologies have been developed to address climate change, challenges remain in their implementation and effectiveness. One of the main problems is limited knowledge and access to adaptation technology, especially in developing countries (Fankhauser, 2016). The information gap between the scientific community and the general community leads to low awareness and acceptance of adaptation solutions that have been developed. As a result, many technologies are not optimally utilized, even in regions most vulnerable to the impacts of climate change.

Funding issues are a significant barrier to the implementation of adaptation technology. Many developing countries face difficulties allocating financial resources for investments in technology that can enhance resilience to climate change (Carmin et al., 2015). Funding for adaptation is often less than that allocated for mitigation, making adaptation a less prioritized aspect of national policy. This financial imbalance also results in underinvestment in research and development of new technology that is more effective and sustainable.

Another barrier is the problem of integrating adaptation policy with economic development and spatial planning policy. Adaptation policy is often not aligned with long-term development policy, leading to ineffective and unsustainable implementation (Cuevas, 2015). Many regions still rely on traditional development approaches that do not consider climate change risks, enhance people's vulnerability to the impacts of natural disasters such as floods, droughts and heat waves.

Social and cultural issues are also barriers to the implementation of adaptation technology, in addition to police challenges. In many communities, especially in rural areas, the adoption of adaptation technology is often hampered by cultural norms, distrust of new technology, and a preference for traditional methods that have been used for many years (Roös, 2020). Lack of education and community involvement in adaptation decision-making also contributes to the ineffectiveness of introduced technology.

Finally, climate change itself is constantly evolving with enhance complex and unpredictable impacts, so current technology may not be sufficient to meet future challenges. Climate change prediction models still have high uncertainty, which makes long-term adaptation planning difficult (Bahn et al., 2015). This uncertainty makes it challenging

for governments and communities to determine the most appropriate and sustainable adaptation strategies.

Climate change has brought enhance visible impacts on various sectors of life, making adaptation technology an urgent necessity. In recent decades, the rising global temperatures and changing extreme weather patterns have affected the social and economic balance in many countries (Li et al., 2019). Large cities are seriously challenges by rising average temperatures and the risk of natural disasters, such as floods and droughts, which require technology-based adaptation strategies to maintain the sustainability of the urban environment and infrastructure.

The urgency of implementing adaptation technology is also due to the economic impacts of climate change. Many production sectors, especially agriculture and energy, are experiencing losses due to erratic changes in weather patterns (Wilson & Orlove, 2021). Delays in the adoption of adaptation technology can exacerbate economic disparities between developed and developing countries, especially as developing countries have lower capacity to deal with climate disasters. Investment in research and development of adaptation technology are urgently needed to ensure the viability of a more stable and inclusive global economy.

The urgency of research and application of adaptation technology is also related to social and political aspects, in addition to economic aspects. Slow adaptation policy can exacerbate social inequality, especially for poor people living in high-risk areas (Liu et al., 2020). Needs mapping and technology development based on social realities are very important so that adaptation can be carried out inclusively. Without appropriate interventions, climate change will further exacerbate existing social inequalities, endangering a country's social and political stability.

This research aims to analyze the urgency of developing and implementing climate change adaptation technology and its impact on social and economic life. Specifically, it aims to understand how climate change affects various sectors of life and the what extent adaptation technology can help mitigate the impacts.

This research seeks to identify key challenges that hinder the development and implementation of adaptation technologies, particularly in resource- and infrastructure-constrained developing countries. This analysis is expected to shed light on the factors that influence the effectiveness of

adaptation technologies and how appropriate strategies can be implemented to enhance community resilience to climate change.

This research aims to evaluate the social and economic impacts of implementing adaptation technologies to climate change. By understanding the relationship between technological innovation and social sustainability, this research is expected to provide insights for policymakers, industry sectors, as well as communities to devise more effective measures to face the challenges of climate change in the future.

B. METHOD

This research uses a literature study approach to analyze adaptation technology to climate change and its impact on social and economic life. This method was chosen because it allows an exploration of previous research that has been conducted in the field of climate change and adaptation technology. A systematic literature study provides a better understanding of the trends, challenges and effectiveness of adaptation technology based on credible academic sources (Berrang-Ford et al., 2015).

This research was conducted by following the systematic steps in the literature review, as suggested by Shaffril et al. (2021), namely through identification of research topics, selection of literature based on relevance and credibility, evaluation of source quality, and thematic analysis of key findings. The main sources used were reputable international journals, research reports, and academic publications. The literature search technique was conducted using scientific databases such as ScienceDirect, SpringerLink, and Google Scholar to ensure broad and in-depth coverage of the topic under study.

The analysis in this research was conducted using a qualitative analysis approach that emphasizes the identification of patterns, themes, and relationships between variables found in the literature. Content analysis techniques were used to classify the various forms of adaptation technology that have been developed, challenges in implementation, and the socio-economic impacts of their application (Sietsma et al., 2021). By synthesizing previous research, this study aims to provide a comprehensive overview of the extent to which adaptation technology has been implemented and how it has impacted society (Biesbroek et al., 2018). With this systematic approach, this research is expected to make a

meaningful contribution to understanding and developing technology-based climate change adaptation strategies.

C. RESULTS AND DISCUSSION

The Impact of Climate Change on Various Sectors of Life and the Urgency of Adaptation Technology Implementation

Climate change has had major impacts on many sectors of life, including agriculture, health, water resources, economics and infrastructure. Rising global temperatures, changing precipitation patterns and enhanced frequency of natural disasters have reduced agricultural productivity, enhanced public health risks and exacerbated water scarcity in many regions of the world (Harrison et al., 2015). As the challenges posed by climate change become more complex, the application of adaptation technologies is becoming enhance urgent to ensure ecosystem sustainability and socioeconomic resilience.

In the agricultural sector, changing weather patterns and rising global temperatures have led to reduced crop yields and enhanced the risk of crop failure. Adaptation technologies, such as the development of drought-resistant crop varieties and artificial intelligence-based irrigation systems, have been implement to mitigate the negative impacts of climate change on the sector (Trærup & Stephan, 2015). The application of precision agriculture systems that use sensors and satellite data can help farmers optimize resource use and enhance production efficiency. The impacts of climate change on the health sector are also becoming more apparent, especially with rising temperature extremes contributing to the spread of tropical diseases and an enhance in heatstroke cases. Studies show that enhanced air pollution due to climate change can exacerbate respiratory diseases, especially in urban areas with high emission levels (Anabaraonye et al., 2020). To address these challenges, adaptation technologies such as air quality monitoring systems and more disaster-resilient health infrastructure are needed to protect public health.

Water resources are also the sector most affected by climate change, with many regions experiencing reduced availability of clean water due to changing rainfall patterns and rising global temperatures. Seawater desalination technologies and renewable energy-based wastewater treatment systems have been developed to ensure sustainable clean water supply (Aras et al., 2017). The implementation of

rainwater harvesting and water management systems based on the Internet of Things (IoT) has been shown to improve efficiency in water resources management in various regions.

The economic sector is not immune to the impacts of climate change, especially in terms of rising investment risks and global market instability. Enhance frequent natural disasters have caused major financial losses for many industries, including agriculture, energy and manufacturing (Martinich & Crimmins, 2019). To mitigate these risks, artificial intelligence-based financial technology is being used to develop climate risk-based insurance schemes and economic impact prediction models of climate change.

In the infrastructure sector, climate change impacts have led to an enhance in the frequency of floods, heat waves and storms that damage public facilities and buildings. Adaptation technology in the form of disaster-resistant architectural design and AI-based intelligent transportation systems have been implemented in several cities to reduce infrastructure vulnerability to climate impacts (Aboulnaga et al., 2019). With the integration of these technology, urban planning systems can be developed to be more resilient to the challenges of climate change.

The impacts of climate change on various sectors of life are enhance evident and complex. The implementation of adaptation technology must be a top priority to ensure community resilience and environmental sustainability. The government, private sector and civil society need to work together to encourage technology innovation that can effectively and sustainably address the challenges of climate change. Proper adaptation measures can minimize climate change impacts and help maintain stable livelihoods amid environmental changes.

Key Challenges in the Development and Implementation of Climate Change Adaptation Technology

The development and implementation of climate change adaptation technology encounter multidimensional challenges, covering technical, social, economics and policy aspects. One of the main challenges is the lack of integration between technology solutions and ecosystem-based approaches in urban policies. Many cities are experiencing rising temperatures and extreme weather events that threaten infrastructure and residents' well-being, but adaptation efforts are still limited to solutions that are not effectively coordinated (Lin et al., 2021). A more comprehensive approach, which

combines technology solutions with ecosystem-based mitigation, still requires further research and support from various stakeholders.

Major challenges also arise in the energy sector, especially to ensure a sustainable energy transition that takes into account adaptation needs, in addition to technical aspects. Many developing countries still rely on fossil fuels due to limited renewable energy infrastructure. In fact, the development of adaptation technologies in energy systems, such as smart grids and battery-based energy storage, can enhance the resilience of energy systems to climate change impacts (Lyster & Solis, 2016). Limited financial resources and policies that do not favor renewable energy are the main barriers to the implementation of these technologies.

From an economic perspective, the lack of financing for research and implementation of adaptation technologies is also a major obstacle. Many developing countries face difficulties in allocating funds for investment in technologies that can enhance resilience to climate change. The debate between developed and developing countries regarding the division of responsibilities in adaptation funding remains an unresolved global issue (Carmin et al., 2015). A more equitable and transparent funding mechanism is needed to support widespread adaptation technology innovation.

Lack of coordination between central and local governments is a major barrier to the implementation of adaptation strategies. Adaptation policies are often made without considering the needs and capacities at the local level, leading to ineffectiveness in implementation. A study conducted in Pakistan showed that successful implementation of adaptation policies relies heavily on the existence of strong local institutions, inter-governmental coordination, and active community involvement (Mumtaz, 2019). The success of adaptation strategies relies heavily on collaborative and local needs-based approaches.

Social aspects are also a challenge that cannot be ignored. Lack of community awareness and participation in the implementation of adaptation technologies can hinder their effectiveness. Many communities still rely on traditional methods to deal with climate change, making them less receptive to new technologies. While these methods have cultural value and historical relevance, they are not always sufficient to deal with increasingly complex climate change. Studies show that educational

campaigns and community-based approaches can help enhance the adoption of adaptation technologies at the local level (Cuevas, 2015).

Social and economic challenges and climate uncertainty also hamper long-term adaptation planning. Many of adaptation technology are designed based on current climate change projections, but variations in climate models make planning more complex and difficult to predict (Salzmann et al., 2016). More flexible and dynamic adaptation approaches are needed to deal with changing climate scenarios.

Overall, the challenges in developing and implementing climate change adaptation technology include technical, policy, economic, social and scientific aspects. Overcoming these challenges requires a multidisciplinary approach that integrates technology, evidence-based policy, and the active involvement of communities and the private sector. With stronger collaboration, the implementation of adaptation technologies can be more effective to deal with the affect of climate change that are becoming more complex.

The Effect of Adaptation Technology on the Social and Economic Life of Communities Affected by Climate Change

Climate change adaptation technologies have a significant impact on people's social and economic lives, especially to enhance resilience to the impacts of extreme weather and environmental change. One of the most affected sectors is agriculture, where adaptation technologies such as artificial intelligence-based irrigation and breeding of drought-resistant crop varieties have enhanced the efficiency of food production. The study by Macháč et al. (2019) shows that the application of adaptation technologies in agriculture reduces losses due to climate change, and provides significant social and economic benefits through enhanced productivity and food security.

Adaptation technologies also impact the economy of communities through the creation of new jobs, in addition to the agricultural sector. The development of adaptation technologies such as renewable energy, early warning systems, and disaster-resilient infrastructure requires skilled labor, which further enhance employment opportunities in various sectors. Investments in infrastructure adaptation technologies reduce damage from natural disasters and have a positive impact on

improving the economic well-being of communities through job creation and local economic growth (Jeong & Kim, 2019).

From a societal perspective, adaptation technologies also contribute to improved community well-being through reduced vulnerability to climate change impacts. Technologies such as early warning systems and artificial intelligence-based weather prediction models enable communities to be better prepared for natural disasters, reducing loss of life and economic losses. A study by Enríquez-de-Salamanca et al. (2017) found that the implementation of ecosystem-based adaptation technologies and green infrastructure can improve people's quality of life by reducing air pollution, enhancing the availability of clean water, and strengthening resilience to natural disasters.

In the finance and investment sector, adaptation technologies enable more inclusive funding schemes to support communities affected by climate change. Weather index-based insurance models and blockchain-based financial systems have been used to help farmers and fishermen reduce risks due to climate variability. The involvement of the public and private sectors in the development of adaptation finance schemes can enhance the economic resilience of communities and reduce social inequalities to cope with climate change impacts (Buso & Stenger, 2015).

Adaptation technologies also play a role in enhancing the efficiency of natural resource use, which has a direct impact on the economy and environmental sustainability. The implementation of IoT-based precision agriculture and water management systems has helped reduce resource wastage, enhance crop yields, and optimize fertilizer and pesticide use. A study by Carter et al. (2018) shows that efficiency in resource utilization supported by adaptation technologies can reduce economic pressure on communities and help them better adapt to climate change.

Another social impact of adaptation technologies is enhanced community awareness of climate change risks. Technology not only serves as a technical adaptation tool, but also as a means to convey information more widely and quickly. Better access to information through digital-based communication technologies has enabled communities to understand the adaptation strategies that work best for them. The study by Csete (2019) shows that community

involvement in the implementation of adaptation technologies is crucial to ensure their effectiveness in the long-term.

Overall, adaptation technologies play a major role in strengthening the economic and social resilience of communities to climate change. While there are challenges in implementation, such as resource constraints and gaps in access to technology, the benefits are far greater, both in economic and social terms. As innovations in adaptation technologies continue to enhance, it is hoped that more communities will be able to enjoy the benefits of these technologies and enhance their capacity to deal with the evolving challenges of climate change.

D. CONCLUSIONS

Adaptation technologies play a crucial role in enhancing community resilience to climate change, both in social and economic aspects. The application of adaptation technologies has been proven to provide tangible benefits, such as enhancing agricultural productivity, creating new jobs, and strengthening infrastructure and early warning systems to reduce the impact of natural disasters. Various technology-based solutions, such as adaptive financial systems and artificial intelligence-based resource management, have contributed to enhancing the efficiency of resource utilization and minimizing the economic risks posed by climate change. While the benefits have been widely demonstrated, challenges in the implementation of adaptation technologies remain a major obstacle, mainly related to limited funding, lack of policy coordination, and inequality in access to technology in different regions.

Based on these findings, more targeted strategies are needed to accelerate the adoption of adaptation technologies in various sectors of life. The government and private sector must collaborate to create policies that support research and development of adaptation technologies, including financial incentives for innovations that contribute to social and economic sustainability. Enhancing community awareness of the benefits of adaptation technology is also an important aspect that needs to be strengthened through educational programs and active community participation in the decision-making process related to climate change adaptation. Ecosystem-based approaches and the utilization of smart technologies must be integrated in adaptation policies to ensure that the solutions implemented are effective in the short term and sustainable in the long term. With the right strategic steps, it is expected that adaptation

technology can be optimized to the challenges of climate change and enhance community welfare in a more inclusive and sustainable manner.

REFERENCES

Álvaro Enríquez-de-Salamanca, R. Díaz-Sierra, R. Martín-Aranda, & M. Santos. 2017. Environmental Impacts of Climate Change Adaptation. *Environmental Impact Assessment Review*, 64, 87-96.

Anabaraonye, B., B. Ewa, & K. Wala. 2020. The Impacts of Climate Change on Nigeria's Health Sector and Innovative Solutions for Environmental Sustainability. *Journal of Environmental Sustainability*, 6(2), 01-07.

Antoci, S. Borghesi, G. Galdi, & S. Vergalli. 2019. Adoption Gaps of Environmental Adaptation Technologies with Public Effects. *Environmental and Resource Economics*, 83(2), 313-339.

Aras, M., A. Tanik, A. Cosgun, S. Abat, & M. Aşkiner. 2017. Sectoral Impact Analysis Methodology within the Scope of Climate Change Adaptation. *Turkish Journal of Water Science & Management*, 1(1), 44-53.

Bahn, O., K.C. de Bruin, & C. Fertel. 2015. Will Adaptation Delay the Transition to Clean Energy Systems?. *ERN: Other Development Economics: Agriculture*, 8, 1-27.

Berrang-Ford, L., T. Pearce, & J. Ford. 2015. Systematic Review Approaches for Climate Change Adaptation Research. *Regional Environmental Change*, 15, 755-769.

Biesbroek, R., L. Berrang-Ford, J. Ford, A. Tanabe, S. Austin, & A. Lesnikowski. 2018. Data, Concepts, and Methods for Large-N Comparative Climate Change Adaptation Policy Research: A Systematic Literature Review. *Wiley Interdisciplinary Reviews: Climate Change*, 9(6), 1-15.

Buso, M. & A. Stenger. 2015. Adaptation to Climate Change: Public-Private Arrangements for Multi-Stage Investment Projects. *Environmental Science, Economics*, 1-17.

C. R. Solorzano. 2016. Connecting Climate Social Adaptation and Land Use Change in Internationally Adjoining Protected Areas. *Conservation and Society*, 14(2), 125-133.

C. Timmermann. 2021. Adapting Agriculture to a Changing Climate: A Social Justice Perspective. In *Justice and Food Security in a Changing Climate*, 31-35.

Carmin, J., K. Tierney, E. Chu, L. Hunter, J. Roberts, & L. Shi. 2015. *Adaptation to Climate Change*. Oxford University Press.

Carter, C., X. Cui, D. Ghanem, & P. Mérel. 2018. Identifying the Economic Impacts of Climate

Cuevas, S. 2015. Linkages among the Challenges in Mainstreaming Climate Change Adaptation into Local Land Use Planning. WIT Press.

Enríquez-de-Salamanca, Á., R. Díaz-Sierra, R. Martín-Aranda, & M. Santos. 2017. Environmental Impacts of Climate Change Adaptation. *Environmental Impact Assessment Review*, 64, 87-96.

Fankhauser, S. 2016. Adaptation to Climate Change. *Environmental Economics eJournal*, 10(26), 1-22.

Harrison, P., R. Dunford, C. Savin, M. Rounsevell, I. Holman, A. Kebede, & B. Stuch. 2015. Cross-Sectoral Impacts of Climate Change and Socio-Economic Change for Multiple, European Land- and Water-Based Sectors. *Climatic Change*, 128, 279-292.

Jeong, H. & H. Kim. 2019. Economic Assessment of Climate Change Adaptation Technologies in Infrastructure Sector. *Korean Journal of Construction Engineering and Management*, 20(2), 44-52.

K. O'Brien. 2017. Climate Change Adaptation and Social Transformation. *International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology*, 1-8.

Li, F., S. Uthes, X. Yang, Y. Lai, & N. N. Gao. 2019. Validating the Usefulness and Calibration of a Two-Dimensional Situation Model of Urgency-Adaptability for Cities Responding to Climate Change—Taking Shenzhen as Case Study. *IOP Conference Series: Earth and Environmental Science*, 351(1), 1-14.

Lin, B., A. Ossola, M. Alberti, E. Andersson, X. Bai, C. Dobbs, et al. 2021. Integrating Solutions to Adapt Cities for Climate Change. *The Lancet Planetary Health*, 5(7), e479-e486.

Liu, W., L. Liu, & J. Gao. 2020. Adapting to Climate Change: Gaps and Strategies for Central Asia. *Mitigation and Adaptation Strategies for Global Change*, 25, 1439-1459.

Lyster, R. & M. Solis. 2016. Adaptation and the Energy Sector. Edward Elgar Publishing.

Change on Agriculture. *Annual Review of Resource Economics*, 10(1), 361-380.

Macháč, J., J. Brabec, & M. Trantinová. 2019. Climate Change Adaptation Measures are Economically Justifiable even under No Climate Change: Evidence from the South-Moravian Region. *Proceedings*, 30(1), 7.

Martinich, J. & A. Crimmins. 2019. Climate Damages and Adaptation Potential across Diverse Sectors of the United States. *Nature Climate Change*, 9(5), 397-404.

Mumtaz, M. 2019. Climate Change Adaptation in the Agriculture Sector: An Analysis of Governance Challenges in Two Pakistani Provinces. *Undergraduate Theses*, Sao Paulo University.

Roös, P. 2020. The Challenge of a Changing Environment. *Climate Change Adaptation and Sustainability*, 27-43.

Salzmann, N., C. Huggel, S. U. Nussbaumer, & G. Zier vogel. 2016. Setting the Scene: Adapting to Climate Change- A Large Scale Challenge with Local- Scale Impacts. *Climate Change Adaptation Strategies— An Upstream-Downstream Perspective*, 3-15.

Shaffril, H. A., A. A. Samah, & S. F. Samsuddin. 2021. Guidelines for Developing a Systematic Literature Review for Studies Related to Climate Change Adaptation. *Environmental Science and Pollution Research*, 28, 22265 - 22277.

Shintaro, Kobayashi. & J. Furuya. 2015. Development of a Tool for Socio-Economic Evaluation of Agricultural Technologies Directed toward Adaptation to Climate Change. *Jarq-Japan Agricultural Research Quarterly*, 49(2), 135-141.

Sietsma, A. J., J. Ford, M. Callaghan, & J. Minx. 2021. Progress in Climate Change Adaptation Research. *Environmental Research Letters*, 16(5), 1-14.

Trærup, S. & J. Stephan. 2015. Technologies for Adaptation to Climate Change: Examples from the Agricultural and Water Sectors in Lebanon. *Climatic Change*, 131, 435-449.

Wilson, A. & B. Orlove. 2021. Climate Urgency: Evidence of its Effects on Decision Making in the Laboratory and the Field. *Current Opinion in Environmental Sustainability*, 51, 65-76.