

Blockchain as an Instrument of Decentralized Social Order and Democratic Reconfiguration

¹**Dudit Darmawan, ²Basilio dos Santos da Silva, ³Salvador da costa**

¹**Universitas Sunan Giri Surabaya, ²Instituto Boaventura De Timor Leste,**

³**Universitas Katolik Widya Mandira Kupang**

Email: dr.duditdarmawan@gmail.com

ABSTRACT – This study investigates the conceptual and operational impact of blockchain technology on efforts to build decentralized democratic structures. Through a literature-based analysis, it examines how blockchain reshapes governance models, economic interactions, and collective organization by embedding trust and decision-making into digital protocols. While proponents advocate for its transparency, disintermediation, and autonomy, the findings reveal that blockchain systems often reproduce new forms of exclusion and asymmetrical control. Key issues include the opacity of algorithmic authority, unequal access to digital infrastructure, and the ideological framing of decentralization as inherently democratic. The study explores the dual nature of blockchain as both a tool for participatory experimentation and a vehicle for technological governance that may obscure accountability. It emphasizes the need for critical reflection on how blockchain infrastructures are designed, governed, and interpreted within evolving political and economic contexts. By engaging with interdisciplinary perspectives from sociology, political theory, and information systems, the research contributes to deeper understanding of the normative tensions within decentralized technologies. It argues that the democratic potential of blockchain depends not on its technical features alone, but on the collective will to embed justice, inclusion, and transparency into its architecture.

Keywords: blockchain, decentralization, social democratization, governance, algorithmic authority, digital participation, institutional legitimacy.

A. INTRODUCTION

The emergence of blockchain technology has prompted widespread inquiry into how decentralized systems may transform the infrastructure of social organization. Originally conceived as a mechanism for secure, peer-to-peer financial transactions, blockchain has

evolved into a versatile architecture with implications across sectors (Thukral, 2021). Its defining feature—the immutable and distributed ledger—has challenged long-standing institutional arrangements by offering alternatives to centralized authority. As societies grapple with trust deficits in governance, finance, and media, blockchain emerges as a technological proposition for structural reconfiguration (Kohl, 2021).

Within this shifting landscape, debates surrounding radical democratic potential have gained traction. Advocates position blockchain as a tool for redistributing control, enabling transparency, and circumventing hierarchical bureaucracies (Sotoudehnia, 2021). From decentralized autonomous organizations (DAOs) to tokenized voting systems, the technology introduces the possibility of participatory governance executed through algorithmic logic (George et al., 2023). These innovations seek to eliminate intermediaries and encode decision-making into open protocols, fostering horizontal relationships in place of top-down control (Arifin & Darmawan, 2021).

However, such promises coexist with substantial uncertainties. While decentralization suggests inclusivity, it may simultaneously generate new inequalities. The technical knowledge required to navigate blockchain ecosystems often limits participation, while the asymmetry of digital access can replicate existing social divides (Di Vaio et al., 2023). Questions also arise concerning regulatory evasion, power consolidation through mining cartels, and environmental externalities linked to computational intensity (Lianos, 2022). These issues complicate the narrative that blockchain is inherently democratizing.

This research explores the dual nature of blockchain as both enabler and disruptor in the pursuit of decentralized social systems. It examines the conceptual intersections between technology, power, and social transformation,

paying particular attention to how blockchain may redefine governance, economic exchange, and institutional legitimacy. By analyzing critical literature, this study seeks to interrogate the ideological assumptions behind decentralization and assess whether blockchain meaningfully contributes to democratic renewal or functions as a digital mirage.

One of the central problems in this discourse lies in the tension between technological neutrality and ideological application. Winner (1986) observed that artifacts embody politics, meaning that every system carries embedded values and assumptions. Blockchain, often framed as apolitical infrastructure, is no exception (Husain et al., 2020). Its design choices—immutability, consensus protocols, permissionless access—shape how authority, transparency, and accountability are distributed, raising fundamental questions about who benefits and who is excluded (Lo et al., 2022).

Another significant concern involves the convergence of economic libertarianism and technological determinism. According to Turner (2006), the rise of networked technologies has been accompanied by narratives that valorize decentralization while minimizing collective responsibility. Blockchain's libertarian genealogy raises questions about whether decentralization serves public interest or reinforces market logics under the guise of participatory governance. The rhetoric of disintermediation may obscure deeper dynamics of control and opacity (Lee, 2020).

A further issue is the contradiction between transparency and anonymity. While blockchain records are visible and tamper-resistant, user identities are often obfuscated (Sedlmeir et al., 2022). This duality complicates efforts to enforce accountability and regulate illicit activity. Zuboff (1988) argued that visibility without accountability can result in surveillance without protection. Blockchain's technical affordances create paradoxes that must be critically assessed if its democratic aspirations are to be realized meaningfully (Husain et al., 2020).

Studying the social implications of blockchain is crucial to understanding its trajectory beyond financial speculation. As governments and institutions experiment with decentralized systems for voting, public records, and welfare distribution, the stakes extend far beyond cryptocurrency markets (Hsieh et al., 2018).

These applications have the potential to recalibrate state-citizen relationships and institutional trust, shaping how power is negotiated in digitally mediated societies.

Moreover, observing blockchain's ideological framing reveals how narratives of empowerment and innovation are mobilized to legitimize structural changes (Inwood & Zappavigna, 2023). Scrutinizing these narratives helps distinguish between genuine democratization and superficial reform. Such analysis enables a deeper understanding of how emerging technologies transform not only what is done, but how societies imagine the possibilities of doing differently.

This research aims to examine how blockchain technologies influence the architecture of social democratization by altering governance structures, institutional authority, and participatory mechanisms. Through critical analysis of literature spanning sociology, political theory, and information systems, the study seeks to understand how blockchain both enables and limits democratic reordering. The findings contribute to broader debates on technological sovereignty and offer insight into how decentralization can be both a vehicle for equity and a vector for exclusion.

B. METHOD

This study employs a qualitative literature-based research method to explore the socio-political implications of blockchain in the construction of decentralized democratic frameworks. The method focuses on the interpretive analysis of academic texts, conceptual arguments, and critical theory from relevant disciplines, including sociology of technology, political science, and digital governance. Given the abstract nature of blockchain as both a technical infrastructure and an ideological construct, this method is appropriate for tracing discursive patterns, analyzing conceptual tensions, and identifying normative assumptions embedded within decentralized systems (Hakim et al., 2021). As noted by Flick (2009), qualitative research is particularly effective in unpacking complex social phenomena that intersect with technological innovation and institutional change, allowing for a nuanced understanding that transcends descriptive categorization.

Sources were selected based on their analytical depth, disciplinary relevance, and contribution to ongoing debates about blockchain's

democratic potential and systemic risks. The research follows the structured review model described by Webster and Watson (2002), emphasizing thematic synthesis, critical comparison, and the integration of diverse viewpoints. By organizing the literature around key themes—governance transformation, economic autonomy, and institutional decentralization—the study constructs a narrative that captures both the aspirational and problematic dimensions of blockchain applications. This methodological approach enables a reflective engagement with how digital architectures influence conceptions of legitimacy, participation, and power, thereby offering insight into the evolving terrain of socio-technical governance.

C. RESULTS AND DISCUSSION

As digital infrastructures increasingly mediate civic life, the search for more responsive and transparent models of governance has intensified. Conventional systems, grounded in top-down authority and bureaucratic procedure, often struggle to meet demands for adaptability, equity, and inclusivity (Doerfel & Gibbs, 2020). In this climate of institutional fatigue, emerging technologies offer new conceptual tools for rethinking how decisions are made and authority is organized. Among them, blockchain has garnered attention as a technical foundation for restructuring political and organizational order (Lumineau et al., 2021).

The appeal of blockchain lies in its capacity to displace centralized control with distributed consensus, inviting a reconsideration of what it means to participate, to govern, and to be governed (Bousfield, 2019). It offers a framework in which coordination occurs not through institutional mandate but through cryptographic agreement among dispersed agents. This architectural shift does not merely optimize existing practices; it proposes a redefinition of legitimacy itself, moving from representative delegation to procedural automation (García-Valls et al., 2018).

Through innovations such as smart contracts and distributed ledgers, blockchain enables the encoding of collective agreements into self-executing systems (Governatori et al., 2018). These innovations minimize reliance on institutional intermediaries and redefine accountability as an outcome of design rather than discretionary enforcement. As such, the

traditional space of negotiation, arbitration, and interpretation is restructured through algorithmic logic, raising profound questions about the evolving nature of governance (Isaar & Aneesh, 2022).

Decentralized autonomous organizations illustrate how authority can be embedded directly into code, allowing operations to proceed independently of human oversight (Santana & Albareda, 2022). These entities offer experimental ground for post-bureaucratic coordination, where roles, rights, and responsibilities are defined by protocols rather than institutional charters. This procedural model alters how communities are formed and sustained, emphasizing participation through computational engagement rather than formal representation (Roblek et al., 2020).

In exploring this transformation, one encounters both a technological proposition and a philosophical challenge. Blockchain's distributed architecture presents an invitation to reconceive collective agency, institutional structure, and normative order (Reijers & Coeckelbergh, 2018). As these systems become more prevalent, they demand a critical engagement with the values and assumptions they encode—especially concerning autonomy, trust, and the limits of programmable coordination (Abbas et al., 2016).

Blockchain technology introduces a structural alternative to traditional models of centralized governance by distributing authority across a network of participants. This redistribution alters the fundamental design of social decision-making, replacing hierarchical control with consensus protocols. In decentralized autonomous organizations (DAOs), for instance, collective choices are executed through smart contracts rather than administrative intermediaries (Santana & Albareda, 2022). Such mechanisms reframe governance as a procedural logic embedded in code, reshaping how legitimacy and accountability are structured in digital environments.

The shift from centralization to distributed control challenges conventional notions of political representation. Traditional systems rely on elected officials to mediate between citizens and institutions (Bandeira & Ferraro, 2017). Blockchain-based systems, however, permit direct participation through tokenized voting or algorithmic consensus, removing intermediaries from the decision process. As Tapscott and Tapscott (2016) suggest, this model

can foster transparency and responsiveness, though it also raises concerns about technological determinism and the exclusion of those lacking digital literacy or infrastructure.

Economically, blockchain enables alternative models of value exchange that bypass traditional financial institutions. Cryptocurrencies, decentralized finance (DeFi), and peer-to-peer platforms reconfigure economic relationships by removing centralized gatekeepers (Johnson, 2020). This opens new pathways for financial inclusion and autonomy, particularly in regions with unstable currencies or limited banking access. Yet, as Scott (2006) points out, economic decentralization may still concentrate power among early adopters or those controlling large computational resources, reinforcing rather than dissolving inequalities.

One critical implication lies in the redefinition of institutional trust. Conventional governance relies on institutional reputation and regulatory mechanisms to maintain order (Abbot & Snidal, 2021). Blockchain, in contrast, embeds trust in technological infrastructure—what Luhmann (1995) might describe as system trust rather than interpersonal trust. While this model promises immutability and auditability, it also introduces opacity, as users must rely on developers and code auditors to validate the system's integrity.

The integration of blockchain into public administration illustrates both the potential and limitations of decentralization. Pilot programs in land registry, voting, and identity verification have demonstrated improved efficiency and reduced fraud risk (Shuaib et al., 2022). However, these implementations also reveal tensions between legal frameworks and decentralized logic. As Lessig (1999) emphasized, code functions as law in digital environments, meaning governance is increasingly determined by design choices rather than legal deliberation. This raises ethical and constitutional questions about who writes the rules and how disputes are resolved.

Blockchain's promise of radical transparency must be tempered by recognition of its technical and ethical constraints. Public ledgers offer permanent visibility of transactions, yet user anonymity complicates attribution and enforcement (Riva, 2020). This duality has been exploited for illicit finance, raising concerns among regulators and undermining blockchain's democratic credibility. As Zysman

and Kenney (2015) argue, technological architectures are never neutral; they embed institutional biases and power asymmetries that shape social outcomes.

In terms of civic organization, blockchain enables new forms of association grounded in shared protocols rather than geography or identity. Communities can organize around token economies, with collective action governed by code. This fosters experimentation in participatory models, yet it also risks fragmentation and echo chambers. Without deliberative safeguards, decentralized structures may devolve into technocratic oligarchies where decision-making is skewed by capital stake or technical access (Bueno & Salapa, 2022).

The role of developers and technologists in these ecosystems deserves closer scrutiny. While blockchain claims to decentralize control, system design is often concentrated among core contributors with disproportionate influence over protocol updates and governance frameworks (Zachariadis et al., 2019). This mirrors traditional institutional hierarchies in a new guise, raising questions about democratic legitimacy in code-driven environments. As Star and Bowker (1999) suggest, infrastructure reflects institutional histories and decisions that often go unexamined by end users.

Blockchain also disrupts the temporal rhythm of governance. Traditional institutions operate in cycles—elections, fiscal years, legislative sessions—whereas blockchain systems function continuously and asynchronously (Susskind, 2017). This temporal shift affects accountability and responsiveness, as decisions may be automated or irreversible. The speed and permanence of smart contracts can outpace social deliberation, reducing space for reflection or correction. Such dynamics necessitate rethinking procedural norms in digital systems of governance (Gill & Germann, 2022).

The economic incentive structures embedded in blockchain applications introduce another complexity. Token economies reward participation through speculation and staking, aligning user interests with network growth. While this mechanism supports engagement, it may also distort civic priorities, as users optimize for financial return rather than democratic deliberation. The gamification of governance risks commodifying participation, reducing civic responsibility to strategic behavior (Hassan, 2017).

Privacy remains a contested issue within decentralized systems. While blockchain offers pseudonymity, data stored on-chain is permanent and globally accessible (Walters, 2019). This tension between visibility and protection challenges normative assumptions about consent, control, and the right to be forgotten. The absence of data redaction mechanisms poses ethical dilemmas, particularly when personal information is linked to immutable records. As Solove (2006) notes, informational autonomy is central to democratic agency, yet blockchain's permanence complicates its preservation.

Interoperability between blockchain and existing legal systems presents further ambiguity. Smart contracts operate according to code, yet their legal enforceability is uncertain. Disputes may arise over jurisdiction, interpretation, and remedy—domains traditionally handled by courts. Without institutional bridges, decentralized systems risk existing in legal vacuums that undermine rights protection and procedural fairness. Bridging this gap requires hybrid models that balance technical automation with legal oversight (Enarsson et al., 2022).

The symbolic power of decentralization also merits attention. Blockchain is often framed as a utopian escape from centralized corruption, yet such narratives can obscure structural inequalities that persist within decentralized frameworks. As Eubanks (2018) warns, technocratic solutions may perpetuate exclusion by embedding bias in digital systems. A critical approach must interrogate how blockchain technologies represent, reinforce, or challenge prevailing distributions of power (Quintais et al., 2019).

Environmental considerations further complicate blockchain's democratic aspirations. Energy-intensive consensus mechanisms, such as proof-of-work, impose ecological costs that conflict with sustainability goals. These externalities disproportionately impact vulnerable communities, undermining claims of equity and inclusion. Transitioning to more efficient protocols may alleviate some concerns, but trade-offs between security, decentralization, and environmental impact remain unresolved (Gramlich et al., 2023).

Ultimately, the transformative capacity of blockchain depends on how societies choose to design, govern, and interpret its systems. Technology does not dictate outcomes; it

provides a substrate upon which institutional logics are encoded. Whether blockchain fosters democratization or reproduces hierarchy hinges on normative commitments, design transparency, and inclusive governance processes (Semenzin, 2023). Ongoing reflection and participatory oversight are essential to ensure that the architecture of decentralization aligns with the aspirations of collective justice.

The promises attached to decentralized systems must be evaluated not solely through technical metrics, but by examining how they mediate power, shape access, and construct legitimacy. Blockchain offers a framework that invites new forms of participation, yet participation without equity remains an empty gesture. Its frameworks may embed consensus mechanisms, but the inclusiveness of those mechanisms depends on who is able to engage, contribute, and contest within them. Structural justice, therefore, is not a guaranteed output of decentralization—it is a choice encoded through collective intention (Hoffman et al., 2020).

As societies grapple with declining trust in traditional institutions, the allure of technological solutions grows stronger. Yet the legitimacy of any governance system, whether analog or algorithmic, rests on the fairness of its processes and the accountability of its actors. If blockchain is to support democratic renewal, its deployment must be grounded in principles that transcend efficiency and automation (Reinsberg, 2021). It must reflect the pluralistic values and diverse realities of the communities it seeks to serve.

Decentralization, while often framed as inherently egalitarian, can mask forms of exclusion that arise from unequal technical capacity, informational asymmetry, or economic disparity. These barriers, though subtle, can shape outcomes as decisively as any centralized policy. Technologies, no matter how open in architecture, remain vulnerable to capture if their frameworks are not designed with persistent vigilance against domination and opacity (Flyverbom, 2022).

For blockchain to fulfill its radical potential, it must remain open to critical inquiry and adaptive redesign. Static systems calcify inequality; living systems learn, adjust, and evolve (Upadhyay. 2020). The institutional imagination behind blockchain must extend beyond codebases and protocols toward frameworks of responsibility, care, and

deliberation. Its architecture should not merely reflect mathematical consensus, but moral clarity and social accountability.

In the end, the success of decentralization will not be measured by how seamlessly it displaces intermediaries, but by how well it upholds justice across networks. The enduring task is to ensure that the infrastructures we build carry the ethical weight of the societies we envision. Blockchain, if treated with political maturity and design integrity, may serve as one such foundation. Yet it is not the destination—it is an instrument, and it matters who holds it, and to what end.

D. CONCLUSION

This literature reviewed in this study reveals that blockchain is more than a technological innovation; it is an institutional proposition with wide-ranging implications for social organization. Its architecture offers alternatives to centralized authority by embedding governance within distributed systems, thereby challenging existing paradigms of control, participation, and legitimacy. However, the promise of decentralization is accompanied by new concentrations of influence, opaque technical dependencies, and structural exclusions that undermine egalitarian ideals. Blockchain does not inherently deliver social democratization; its outcomes are contingent upon design decisions, governance mechanisms, and cultural interpretations of autonomy and accountability.

The findings of this study suggest that blockchain's influence on social democratization should be understood as a dynamic and contested process. While it introduces tools for radical transparency and participatory experimentation, it simultaneously reproduces limitations related to access, authority, and institutional coherence. This tension calls for ongoing theoretical interrogation and empirical scrutiny. Institutions exploring blockchain adoption must be critically aware of the assumptions and power structures embedded within the technology, lest they replicate the very asymmetries they aim to dissolve.

Future research and policy must approach blockchain not as a neutral infrastructure but as a socio-political system subject to historical forces and normative stakes. Emphasis should be placed on inclusive design, democratic oversight, and reflexive evaluation to ensure

that the path toward decentralization does not displace social justice with technical abstraction. The contribution of this study lies in framing blockchain within the broader project of democratic theory, inviting scholars and practitioners to question how digital architecture can serve not only efficiency and autonomy, but also equity and solidarity.

REFERENCES

Abbass, H. A., G. Leu, & K. Merrick. 2016. A Review of Theoretical and Practical Challenges of Trusted Autonomy in Big Data. *IEEE Access*, 4(1), 2808-2830.

Abbott, K. W. & D. Snidal. 2021. The Governance Triangle: Regulatory Standards Institutions and the Shadow of the State. In *The Spectrum of International Institutions* (pp. 52-91). Routledge, Chicago.

Arifin, S., & D. Darmawan. 2021. Technology Access and Digital Skills: Bridging the Gaps in Education and Employment Opportunities in the Age of Technology 4.0, *Journal of Social Science Studies*, 1(1), 163 – 168.

Bandeira, P. & A. Ferraro. 2017. Integrating Participatory Institutions into the Traditional Representative and Bureaucratic Model of Public Governance. *International Political Science Review*, 38(5), 642-658.

Bousfield, D. 2019. Crypto-Coin Hierarchies: Social Contestation in Blockchain Networks. *Global Networks*, 19(3), 291-307.

Bueno, D. C. & A. Salapa. 2022. Decentralization, Technocracy, Democracy and Media, Administrative Control, Participation, Devolution and Local Governance: A Rapid Literature Review. *Institutional Multidisciplinary Research and Development (IMRaD) Journal*, 4(2021), 1-18.

Di Vaio, A., R. Hassan, & R. Palladino. 2023. Blockchain Technology and Gender Equality: A Systematic Literature Review. *International Journal of Information Management*, 68, 102517.

Doerfel, M. L. & J. L. Gibbs. 2020. Organizing Inclusion: Top-Down and Bottom-Up Approaches. In *Organizing Inclusion* (pp. 1-21). UK: Routledge.

Enarsson, T., L. Enqvist, & M. Naarttijärvi. 2022. Approaching the Human in the Loop—Legal Perspectives on Hybrid Human/Algorithmic Decision-Making in Three Contexts. *Information & Communications Technology Law*, 31(1), 123-153.

Eubanks, V. 2018. *Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor*. St. Martin's Press, New York.

Flick, U. 2009. *An Introduction to Qualitative Research* (4th ed.). SAGE Publications, Thousand Oaks, CA.

Flyverbom, M. 2022. Overlit: Digital Architectures of Visibility. *Organization Theory*, 3(3), 1-16.

García-Valls, M., A. Dubey, & V. Botti. 2018. Introducing the New Paradigm of Social Dispersed Computing: Applications, Technologies and Challenges. *Journal of Systems Architecture*, 91, 83-102.

George, A. S., S. Sagayarajan, Y. AlMatroudi, & A. H. George. 2023. If/Then Democracy: Exploring the World of Decentralized Autonomous Organizations (DAOs). *Partners Universal International Research Journal*, 2(2), 241-274.

Gill, A. S. & S. Germann. 2022. Conceptual and Normative Approaches to AI Governance for a Global Digital Ecosystem Supportive of the UN Sustainable Development Goals (SDGs). *AI and Ethics*, 2(2), 293-301.

Governatori, G., F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor, & X. Xu. 2018. On Legal Contracts, Imperative and Declarative Smart Contracts, and Blockchain Systems. *Artificial Intelligence and Law*, 26, 377-409.

Gramlich, V., T. Guggenberger, M. Principato, B. Schellinger, & N. Urbach. 2023. A Multivocal Literature Review of Decentralized Finance: Current Knowledge and Future Research Avenues. *Electronic Markets*, 33(1), 1-37.

Hakim, Y. R. A., J. A. Rojak, B. Triono. 2021. Transformation of Cultural Values and Social Practices in the Digital Age, *Journal of Social Science Studies*, 1(1), 173 – 178.

Hassan, L. 2017. Governments Should Play Games: Towards a Framework for the Gamification of Civic Engagement Platforms. *Simulation & Gaming*, 48(2), 249-267.

Hoffman, M. R., L. D. Ibáñez, & E. Simperl. 2020. Toward a Formal Scholarly Understanding of Blockchain-Mediated Decentralization: A Systematic Review and a Framework. *Frontiers in Blockchain*, 3(35), 1-18.

Hsieh, Y. Y., J. P. Vergne, P. Anderson, K. Lakhani, & M. Reitzig. 2018. Bitcoin and the Rise of Decentralized Autonomous Organizations. *Journal of Organization Design*, 7(1), 1-16.

Husain, S. O., A. Franklin, & D. Roep. 2020. The Political Imaginaries of Blockchain Projects: Discerning the Expressions of an Emerging Ecosystem. *Sustainability Science*, 15(2), 379-394.

Inwood, O. & M. Zappavigna. 2023. Ideology, Attitudinal Positioning, and the Blockchain: A Social Semiotic Approach to Understanding the Values Construed in the Whitepapers of Blockchain Start-Ups. *Social Semiotics*, 33(3), 451-469.

Issar, S. & A. Aneesh. 2022. What Is Algorithmic Governance? *Sociology Compass*, 16(1), 1-37.

Johnson, K. N. 2020. Decentralized Finance: Regulating Cryptocurrency Exchanges. *Wm. & Mary L. Rev.*, 62(6), 1911-2001.

Kohl, U. 2021. Blockchain Utopia and Its Governance Shortfalls. In *Blockchain and Public Law* (pp. 13-40). Edward Elgar Publishing, Cheltenham, UK.

Lee, H. 2023. The Digital Democracy of Blockchain: Beyond Libertarianism to Commonism. In *Affective Capitalism: For a Critique of the Political Economy of Affect* (pp. 173-200). Springer Nature Singapore, Singapore.

Lessig, L. 1999. *Code and Other Laws of Cyberspace*. Basic Books, New York.

Lianos, I. 2022. Value Extraction and Institutions in Digital Capitalism: Towards a Law and Political Economy Synthesis for Competition Law. *European Law Open*, 1(4), 852-890.

Lo, O., W. J. Buchanan, S. Sayeed, P. Papadopoulos, N. Pitropakis, & C. Chrysoulas. 2022. GLASS: A Citizen-Centric Distributed Data-Sharing Model Within an E-Governance Architecture. *Sensors*, 22(6), 1-18.

Luhmann, N. 1995. *Social Systems*. Stanford University Press, Redwood City, California.

Lumineau, F., W. Wang, & O. Schilke. 2021. Blockchain Governance—A New Way of Organizing Collaborations? *Organization Science*, 32(2), 500-521.

Masnawati, E. & Y. Kurniawan. 2021. Technology Optimization in 21st Century Skills Learning: Infrastructure Challenges and Strategies for Equitable Digital Access, *Journal of Social Science Studies*, 1(2), 131 – 136.

Mendonca, C. N., W. Wahyudi, R. N. K. Kabalmay, M. W. Amri. 2021. Developing Technical and Social Competencies for Future-Ready Education in Digitally Mediated Labor Environments, *Journal of Social Science Studies*, 1(2), 259 – 266.

Oluwatoyin, F. 2021. The Dynamics of Social Interaction in the Digital Age: Technological Implications for Interpersonal Relationships and Psychosocial Well-Being, *Journal of Social Science Studies*, 1(2), 137 – 142.

Putra, A. R., & S. Arifin. 2021. Supply Chain Management Optimization in the Manufacturing Industry through Digital Transformation: The Role of Big Data, Artificial Intelligence, and the Internet of Things, *Journal of Social Science Studies*, 1(2), 161 – 166.

Quintais, J. P., B. Bodo, A. Giannopoulou, & V. Ferrari. 2019. Blockchain and the Law: A Critical Evaluation. *Stanford Journal of Blockchain Law & Policy*, 2(1), 87-112.

Reijers, W. & M. Coeckelbergh. 2018. The Blockchain as a Narrative Technology: Investigating the Social Ontology and Normative Configurations of Cryptocurrencies. *Philosophy & Technology*, 31, 103-130.

Reinsberg, B. 2021. Fully-Automated Liberalism? Blockchain Technology and International Cooperation in an Anarchic World. *International Theory*, 13(2), 287-313.

Riva, G. M. 2020. What Happens in Blockchain Stays in Blockchain. A Legal Solution to Conflicts Between Digital Ledgers and Privacy Rights. *Frontiers in Blockchain*, 3(36), 1-18.

Roblek, V., M. P. Bach, M. Meško, & T. Bertoncel. 2020. Best Practices of the Social Innovations in the Framework of the E-Government Evolution. *Amfiteatrul Economic*, 22(53), 275-302.

Santana, C. & L. Albareda. 2022. Blockchain and the Emergence of Decentralized Autonomous Organizations (DAOs): An Integrative Model and Research Agenda. *Technological Forecasting and Social Change*, 182(121806), 1-15.

Scott, J. C. 2006. *Seeing Like a State: How Certain Schemes to Improve the Human Condition Have Failed*. Yale University Press, New Haven.

Semenzin, S. 2023. 'Blockchain for Good': Exploring the Notion of Social Good Inside the Blockchain Scene. *Big Data & Society*, 10(2), 1-14.

Shuaib, M., N. H. Hassan, S. Usman, S. Alam, S. Bhatia, P. Agarwal, & S. M. Idrees. 2022. Land Registry Framework Based on Self-Sovereign Identity (SSI) for Environmental Sustainability. *Sustainability*, 14(9), 1-29.

Solove, D. J. 2006. *The Digital Person: Technology and Privacy in the Information Age*. NYU Press, New York.

Sotoudehnia, M. 2021. 'Making Blockchain Real': Regulatory Discourses of Blockchains as a Smart, Civic Service. *Regional Studies*, 55(12), 1857-1867.

Star, S. L. & G. C. Bowker. 1999. *Sorting Things Out: Classification and Its Consequences*. MIT Press, Cambridge.

Susskind, J. 2017. Decrypting Democracy: Incentivizing Blockchain Voting Technology for an Improved Election System. *San Diego L. Rev.*, 54(1), 785-828.

Tapscott, D. & A. Tapscott. 2016. *Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World*. Penguin, London.

Thukral, M. K. 2021. Emergence of Blockchain-Technology Application in Peer-to-Peer Electrical-Energy Trading: A Review. *Clean Energy*, 5(1), 104-123.

Turner, F. 2006. *From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism*. University of Chicago Press, Chicago.

Upadhyay, N. 2020. Demystifying Blockchain: A Critical Analysis of Challenges, Applications and Opportunities. *International Journal of Information Management*, 54(102120).

Walters, N. 2019. Privacy Law Issues in Public Blockchains: An Analysis of Blockchain, PIPEDA, the GDPR, and Proposals for Compliance. *Canadian Journal of Law and Technology*, 17(2), 276-305.

Webster, J. & R. T. Watson. 2002. Analyzing the Past to Prepare for the Future: Writing a Literature Review. *MIS Quarterly*, 26(2), 13-23.

Winner, L. 1986. *The Whale and the Reactor: A Search for Limits in an Age of High Technology*. University of Chicago Press, Chicago.

Zachariadis, M., G. Hileman, & S. V. Scott. 2019. Governance and Control in Distributed Ledgers: Understanding the Challenges Facing Blockchain Technology in Financial Services. *Information and Organization*, 29(2), 105-117.

Zuboff, S. 1988. *In the Age of the Smart Machine: The Future of Work and Power*. Basic Books, New York.

Zysman, J., & M. Kenney. 2015. The Rise of the Platform Economy. *Issues in Science and Technology*, 32(3), 61-69.